OPCIÓN B

Ejercicio B1

- a) Considerando que las órbitas de los planetas del sistema solar son aproximadamente circulares, utilice los datos de la órbita terrestre (radio, 150·10⁶ km; periodo, 365 días) para calcular la velocidad de traslación de Mercurio, sabiendo que el radio de su órbita mide 57,9·10⁶ km. (0,75 puntos)
- **b)** Calcule el diámetro de Mercurio, sabiendo que la aceleración de la gravedad en su superficie es 3,7 m s⁻² y su densidad media es 5,43 g cm⁻³. (0,75 puntos)

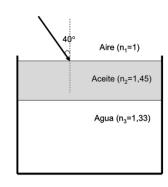
Ejercicio B2

Por dos cables horizontales paralelos, cuya masa por unidad de longitud es 60 kg km⁻¹, situados uno sobre otro y separados 1 cm, circulan corrientes iguales y del mismo sentido.

- a) Si el cable inferior estuviese sustentado únicamente por la fuerza atractiva del otro cable, determine el valor de la intensidad que tendría que circular por los cables. (1,5 puntos)
- **b)** Calcule el vector campo magnético creado por ambos cables en un punto situado 2 cm por debajo del cable inferior, si la corriente en cada cable es 10 A. (1,5 puntos)

Ejercicio B3

Una onda transversal se propaga por una cuerda según la ecuación de movimiento, en unidades S.I.:


$$y(x,t) = 3 \operatorname{sen}(100 t - 5x + \pi/2)$$

- a) Indique el valor de las siguientes magnitudes: amplitud, frecuencia, periodo y longitud de onda. (0,8 puntos)
- **b)** Represente gráficamente la elongación y la velocidad en función de la posición para t = 0. (0,7 puntos)

Ejercicio B4

Consideremos un vaso de agua (índice de refracción $n_3 = 1,33$) en cuya superficie hay una capa de aceite (índice de refracción $n_2 = 1,45$) (ver figura).

- a) Un rayo incide desde el aire (índice de refracción n_1 =1) formando un ángulo de 40° con la normal, como se indica en la figura. Dibuje la marcha de rayos y determine el ángulo de salida del rayo en el agua. (1 punto)
- **b)** Si consideramos ahora un rayo procedente del agua, determine el ángulo de incidencia mínimo en la superficie agua-aceite para que no emerja luz al aire. (1 punto)

Ejercicio B5

- a) Explique dos diferencias entre la fisión y la fusión nuclear. (1 punto)
- **b)** Si un electrón y un protón son acelerados mediante la misma diferencia de potencial, ¿qué relación habrá entre sus respectivas longitudes de onda de De Broglie asociadas? (1 punto)

CONSTANTES FÍSICAS	
Aceleración de la gravedad en la superficie terrestre	$g_0 = 9.80 \text{ m s}^{-2}$
Constante de gravitación universal	$G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Radio medio de la Tierra	$R_{\rm T} = 6.37 \cdot 10^6 \rm m$
Masa de la Tierra	$M_{\rm T} = 5.98 \cdot 10^{24} \rm kg$
Constante eléctrica en el vacío	$K_0 = 1/(4 \pi \varepsilon_0) = 9,00 \cdot 10^9 \text{ N m}^2 \text{ C}^{-2}$
Permeabilidad magnética del vacío	$\mu_0 = 4 \pi \cdot 10^{-7} \text{ N A}^{-2}$
Carga elemental	$e = 1,60 \cdot 10^{-19} \text{ C}$
Masa del electrón	$m_{\rm e} = 9.11 \cdot 10^{-31} \rm kg$
Masa del protón	$m_{\rm p} = 1.67 \cdot 10^{-27} \mathrm{kg}$
Velocidad de la luz en el vacío	$c_0 = 3.00 \cdot 10^8 \text{ m s}^{-1}$
Constante de Planck	$h = 6.63 \cdot 10^{-34} \text{ J s}$
Unidad de masa atómica	$1 u = 1,66 \cdot 10^{-27} \text{ kg}$
Electronvoltio	$1 \text{ eV} = 1,60 \cdot 10^{-19} \text{ J}$