

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

PRUEBA DE ACCESO A LA UNIVERSIDAD

Curso 2024-2025

MATERIA: BIOLOGÍA

INSTRUCCIONES GENERALES Y CALIFICACIÓN

El estudiante debe responder como máximo a 5 preguntas. La primera es de carácter competencial y sin opcionalidad. Las cuatro preguntas restantes constan de dos opciones y se debe elegir una de las dos propuestas (A o B).

CALIFICACIÓN: Todas las preguntas se calificarán sobre 2 puntos. TIEMPO: 90 minutos.

1.- Con respecto al sistema inmunitario y la biotecnología:

En la enfermedad conocida como Síndrome de DiGeorge completo, el timo no se desarrolla de forma normal durante el proceso embrionario y es funcionalmente muy deficiente, de manera que sin tratamiento es letal, ya que la respuesta inmunitaria está muy afectada, además de presentarse otras anomalías. El tratamiento consistiría en el trasplante de tejido de timo cultivado procedente de un individuo compatible.

Por otra parte, la diabetes mellitus tipo 1 es una enfermedad debida a factores genéticos y ambientales en la que el individuo no produce insulina, ya que las células beta productoras de esta hormona en el páncreas son destruidas por el sistema inmune. En este caso, el tratamiento se centra en controlar la cantidad de glucosa en sangre mediante aplicación exógena de insulina.

- a) Indique a qué tipo de patología del sistema inmunitario da lugar el Síndrome de DiGeorge. Razone la respuesta explicando la manera en que se ve afectado el sistema inmunitario (0,5 puntos).
- b) Indique qué tipo de respuesta inmune específica se ve afectada esencialmente en el Síndrome de DiGeorge. Explique brevemente por qué (0,25 puntos).
- c) Explique a qué tipo de trasplante se hace referencia en el texto anterior, en función de la relación existente entre el donante y el receptor (0,25 puntos).
- d) Explique en qué tipo de patología del sistema inmunitario se encuadra la diabetes mellitus tipo I (0,25 puntos).
- e) Describa brevemente cuáles son los principales pasos en el proceso de producción de insulina humana mediante la utilización de las técnicas de ingeniería genética (0,75 puntos).

2.- Elija una de las dos propuestas (A o B) y responda a las preguntas planteadas:

2. A.- En relación con las biomoléculas:

- En 1962 Watson, Crick y Wilkins compartieron el Premio Nobel de Fisiología y Medicina por su contribución al conocimiento del ADN.
- a) Cite los monómeros que forman esta biomolécula y explique la composición de los mismos. Nombre el modelo que explica la estructura del ADN bicatenario (0,75 puntos).
- b) ¿Mediante qué tipo de enlace se unen estos monómeros para formar la biomolécula en cuestión? Explique cómo se forma este enlace (0,75 puntos).
- c) Si una molécula de ADN presenta en su composición un 17% de Adenina, indique el porcentaje de las restantes bases nitrogenadas que posee. Razone la respuesta (0.5 puntos).

2. B.- En relación con las biomoléculas:

En dos envases de distintos tipos de galletas aparece la información nutricional que se muestra en las siguientes tablas:

GALLETA DE AVENA		GALLETA CON CHOCOLATE	
INFORMACIÓN NUTRICIONAL		INFORMACIÓN NUTRICIONAL	
Valor medio por galleta 20 g		C	antidad por 100 g
Valor energético	377 kJ/ 90 kcal	Contenido energético	2089 kJ/ 499 kcal
Grasas	4,2 g	Proteínas	3,7 g
de las cuales:		Grasas totales	25,5 g
poliinsaturadas	0,54 g	Grasa poliinsaturada	2,0 g
monoinsaturadas	3,2 g	Grasa monoinsaturada	5,5 g
saturadas	0,45 g	Grasa saturada	17,4 g
Hidratos de carbono	12,2 g	Hidratos de carbono disponibles	63,7g
de los cuales azúcares	3,6 g	Azúcares	48,7 g
Fibra alimentaria	1,3 g	Azúcares añadidos	45,8 g
Proteínas	1,4 g	Fibra dietética	2,4 g
Sal	0,21 g	Sodio (Contenido en sal = sodio x 2	,5) 0,27 g

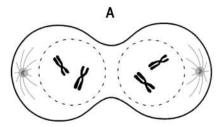
- a) Compare la información nutricional de los dos tipos de galletas y determine cuál de ellas tiene mayor valor energético y cuál mayor contenido en sal por cada 100 g (0,5 puntos).
- b) Los hidratos de carbono presentes en la galleta son de varios tipos. Según la AESAN (Agencia Española de Seguridad Alimentaria y Nutrición), el término azúcares añadidos hace referencia a monosacáridos y disacáridos. Ponga cuatro ejemplos de estos tipos de hidratos de carbono (0,5 puntos).
- c) El otro tipo de hidrato de carbono presente es la fibra alimentaria. Indique cuál es el componente principal de la fibra y señale qué efecto beneficioso tiene en el organismo (0,5 puntos).
- d) Teniendo en cuenta las cantidades de los distintos tipos de grasas saturadas e insaturadas presentes, explique cuál de los dos tipos de galletas sería menos perjudicial para una persona que quiera disminuir el riesgo de padecer enfermedades cardiovasculares (0,5 puntos).

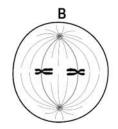
3.- Elija una de las dos propuestas (A o B) y responda a las preguntas planteadas:

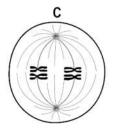
3. A.- En relación con la genética molecular:

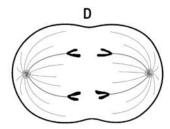
Razone por qué son **falsas** las siguientes afirmaciones:

- a) El proceso de corte y empalme o *splicing* del ARN consiste en cortar los exones y empalmar los intrones para generar ARNm y se produce en el citosol de células eucariotas (0,5 puntos).
- b) El inicio de la transcripción en procariotas está regulado por la unión de factores de iniciación a los ribosomas (0,5 puntos).
- c) Los telómeros de procariotas se acortan tras cada replicación del ADN (0,5 puntos).
- d) El código genético es degenerado porque a cada aminoácido sólo le corresponde un codón (0,5 puntos).


3. B.- En relación con la genética molecular:


- a) Razone por qué algunas mutaciones puntuales son silenciosas (0,5 puntos).
- b) Indique cuál es la diferencia entre poliploidías y aneuploidías (0,5 puntos).
- c) Indique cuál es la diferencia entre mutaciones espontáneas e inducidas (0,5 puntos).
- d) Razone la relación existente entre las mutaciones y el cáncer (0,5 puntos).


4.- Elija una de las dos propuestas (A o B) y responda a las preguntas planteadas:


4. A.- En relación con la biología celular:

- a) Cite las fases principales del ciclo celular y explique brevemente qué ocurre en cada una de ellas (1 punto).
- b) Cite dos procesos que contribuyan a producir variabilidad genética durante la meiosis e indique las fases de la meiosis en las que se producen. Justifique brevemente su respuesta (0,5 puntos).
- c) Nombre cada una de las fases de la reproducción celular de un organismo 2n=4 representadas a continuación (0,5 puntos).

4.-B.- En relación con las membranas biológicas:

- a) Relacione cada característica de la columna de la izquierda con un único concepto de entre los de la derecha (no hace falta que copie el texto, solo que empareje los números y letras que identifican cada opción) (1 punto).
 - 1. Célula vegetal en medio hipertónico
 - 2. Un catión pasa por una proteína canal
 - 3. Célula vegetal en medio hipotónico
 - 4. Entrada de O₂ gas
 - 5. La glucosa entra a través de una permeasa
 - 6. Entran iones contra gradiente electroquímico con gasto de ATP
 - 7. Entra un aminoácido contra gradiente junto con un ion a favor de gradiente
 - 8. Entra un aminoácido contra gradiente y sale un ion a favor de gradiente

- A. Difusión simple mediada por proteinas
- B. Difusión facilitada
- C. Simporte activo secundario
- D. Antiporte activo secundario
- E. Transporte activo primario (bomba)
- F. Turgencia
- G. Difusión simple a través de la bicapa lipídica
- H. Plasmolisis
- b) Indique dos funciones de las membranas distintas de la permeabilidad selectiva y el transporte de compuestos (0,5 puntos).
- c) Indique los tres componentes principales de la membrana plasmática y describa brevemente su localización en la misma (0,5 puntos).

5.- Elija una de las dos propuestas (A o B) y responda a las preguntas planteadas:

5. A.- En relación con el metabolismo celular:

- a) Respecto a la respiración celular y la fermentación láctica, indique: 1) qué metabolito tienen en común estos dos procesos, 2) qué las diferencia respecto al requerimiento de oxígeno para que se produzcan, 3) cuáles son los productos finales de estos procesos y 4) a qué se debe la diferencia en la producción de ATP entre ambas (1 punto).
- b) Indique en qué orgánulo y, dentro del mismo, en qué compartimento ocurre la beta-oxidación de los ácidos grasos y cuáles son los tres productos finales de esta vía metabólica (1 punto).

5. B.- Respecto al metabolismo de los seres vivos:

- a) En relación con el ATP: 1) indique el nombre de dos tipos de reacciones metabólicas en las que se produce; 2) cite en qué orgánulo/s membranoso/s de la célula vegetal se puede sintetizar; 3) indique una función de este en el metabolismo celular (0.75 puntos).
- b) Explique brevemente la relación del ciclo de Krebs con la cadena de transporte electrónico mitocondrial (0,5 puntos).
- c) Si en un laboratorio se miden los productos generados por un cultivo de cianobacterias en H₂O, se observa que uno de ellos es un gas. Responda razonadamente qué gas se genera a partir de este cultivo. Explique si este gas se produciría si el cultivo se realizara a 70°C (0,75 puntos).

BIOLOGÍA

CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN

- 1. Cada una de las preguntas podrá tener dos o más apartados.
- 2. Cada pregunta será evaluada de forma independiente y se calificará de cero a dos puntos. Se puntuarán <u>obligatoriamente</u> todos los apartados, cada uno de los cuales será puntuado, con intervalos de 0,25 puntos, con la valoración indicada en cada uno de ellos en las cuestiones del examen.
- 3. La calificación final del examen será la suma de las calificaciones obtenidas en las cinco preguntas.
- 4. El contenido de las respuestas, así como la forma de expresarlo deberá ajustarse <u>estrictamente</u> al texto formulado. Por este motivo, se valorará positivamente el uso correcto del lenguaje biológico, la claridad y concreción en las respuestas, así como la presentación y pulcritud del ejercicio.
- 5. De acuerdo con las normas generales establecidas, los errores ortográficos se valorarán negativamente.