UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

PRUEBA DE ACCESO A LA UNIVERSIDAD

Curso **2024-2025**

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

INSTRUCCIONES GENERALES Y CALIFICACIÓN

El examen consta de **4 ejercicios**: el primero sin apartados optativos y los tres siguientes con posibilidad de elección. **Todas las respuestas deben ser razonadamente justificadas.**

CALIFICACIÓN: cada ejercicio se valorará sobre 2,5 puntos.

DURACIÓN: 90 minutos.

EJERCICIO 1 (2,5 puntos) Responda los dos apartados. Este ejercicio no tiene opcionalidad.

El dueño de una frutería quiere alquilar una cámara frigorífica para la campaña de sandías del verano. Entre las diferentes cámaras que puede alquilar cercanas a su frutería, la que más le convence es una que tiene capacidad para guardar 2700 kilos de sandía que es, según sus datos de años anteriores, la cantidad de kilos que vende cualquier semana de la campaña. Las sandías que vende son de tres variedades: sandía verde rayada, sandía negra sin pepitas y sandía negra con pepitas. La sandía rayada es la menos apreciada por su clientela, por ello decide ponerle el precio más bajo y la venderá a 1,25 euros el kilo. Las sandías negras son las más demandadas entre su clientela, pero entre estas dos variedades es más fácil vender la variedad sin pepitas. Por esta razón, determina que el precio de la sandía negra sin pepitas sea de 2,75 euros el kilo y el precio con pepitas de 2,25 euros el kilo.

El dueño de la frutería quiere que, en cualquier circunstancia, el número de kilos de sandía negra con pepitas vendidos sea un tercio del total de kilos de sandías sin pepitas y sandías rayadas.

- **1.a)** (1,25 puntos) El frutero considera que para poder pagar el alquiler y obtener beneficio, debe recaudar de la venta 5400 euros cualquier semana de la campaña. Si se venden todas las sandías almacenadas para la semana, ¿cuántos kilos debería vender de cada variedad para recaudar exactamente ese importe?
- **1.b)** (1,25 puntos) Con la idea de simplificar el etiquetado, el frutero necesita saber si es posible poner el mismo precio a todas las variedades de sandías y seguir recaudando 5400 euros a la semana vendiendo los 2700 kilos. Si fuera posible, ¿cuál sería el precio de venta del kilo de sandía?, ¿cuál sería la cantidad de kilos de cada variedad que debería vender?. Justifique si dichas cantidades serían únicas.

EJERCICIO 2 (2,5 puntos) Responda únicamente a una de las dos preguntas, o bien 2.1 o 2.2.

Pregunta 2.1

Se considera la función real de variable real definida por la siguiente expresión:

$$f(x) = \begin{cases} \frac{x^2 + 1}{x - 1} & \text{si } x \le 0\\ \frac{x + a}{x + 1} & \text{si } x > 0 \end{cases}, \quad a \in \mathbb{R}$$

- **2.1.a)** (1 punto) Determine el valor del parámetro real a para que la función sea continua en x=0.
- **2.1.b)** (1,5 puntos) Calcule las asíntotas de f(x).

Pregunta 2.2

Se considera la función real de variable real dada por la siguiente expresión: $f(x) = e^x(-x^2 + 3)$.

- **2.2.a)** (1,25 puntos) Determine los intervalos de crecimiento y decrecimiento de la función y clasifique, si procede, sus extremos relativos.
- 2.2.b) (1,25 puntos) Halle el valor de la integral definida

$$\int_{1}^{2} \frac{f(x)}{xe^{x}} dx$$

EJERCICIO 3 (2,5 puntos) Responda únicamente a una de las dos preguntas, o bien 3.1 o 3.2.

Para poder participar en el concurso "Mejor Jabón Artesano del año" es necesario pasar un control de calidad muy exigente.

Pregunta 3.1

Un maestro jabonero sabe que el 90 % de sus pastillas de jabón hechas a mano pasarían sin problemas este control de calidad.

- **3.1.a)** (1 punto) La empresa organizadora del concurso elegirá en el taller de cada participante una muestra aleatoria simple de pastillas de jabón para obtener una estimación de la proporción de ellas que superan el control de calidad. Suponiendo cierta la creencia del maestro jabonero sobre la calidad de sus pastillas, determine el tamaño mínimo necesario de la muestra de pastillas de jabón que la empresa organizadora debe tomar en el taller de este artesano para garantizar, con un nivel de confianza del 95 %, que el margen de error en la estimación sea inferior al 5 %.
- **3.1.b)** (1,5 puntos) Si finalmente la organización decide seleccionar una muestra aleatoria simple de 140 pastillas de jabón de este artesano, calcule, aproximando por la distribución normal adecuada, la probabilidad de que al menos 120 pastillas de jabón superen el control de calidad.

Pregunta 3.2

El peso de las pastillas de jabón de este artesano se puede aproximar por una variable aleatoria con distribución normal de media μ gramos y desviación típica 30 gramos.

- **3.2.a)** (1,25 puntos) La empresa organizadora del concurso seleccionó 140 pastillas de jabón de este artesano y obtuvo que el peso total fue de 17500 gramos. Obtenga un intervalo de confianza del 99 % para estimar el peso medio μ de las pastillas de jabón de este artesano.
- **3.2.b)** (1,25 puntos) Si el verdadero valor de μ fuera igual a 100 gramos, ¿cuál sería la probabilidad de que el peso medio de 64 pastillas de jabón de una muestra aleatoria simple fuera superior a 110 gramos?

EJERCICIO 4 (2,5 puntos) Responda únicamente a una de las dos preguntas, o bien 4.1 o 4.2.

Pregunta 4.1

En un concesionario el 50 % de sus ventas son de automóviles microhíbridos, el 35 % híbridos y el resto eléctricos enchufables. El acabado más alto de gama se vende en el 80 % de los eléctricos enchufables, el 60 % de los híbridos y el 45 % de los microhíbridos. Se selecciona una operación de venta al azar.

- **4.1.a)** (1,25 puntos) Calcule la probabilidad de que el coche vendido en esa operación no tenga el acabado más alto de la gama.
- **4.1.b)** (1,25 puntos) Si el coche correspondiente a la operación de venta seleccionada tiene el acabado más alto de la gama, determine la probabilidad de que sea eléctrico enchufable.

Pregunta 4.2

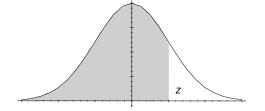
De tres sucesos A, B y C se sabe que A y C son sucesos disjuntos, A y B son independientes y se tienen las siguientes probabilidades: P(A) = 0,25, P(B) = 0,2 y $P(B \cap C) = 0,05$.

- **4.2.a)** (1 punto) Calcule la probabilidad de que ocurra al menos uno de los sucesos A o B.
- **4.2.b)** (1 punto) Calcule $P(\overline{B} \cup \overline{C})$.
- **4.2.c)** (0,5 puntos) ¿Pueden ser independientes los sucesos A y C?

MATEMATICAS APLICADAS A LAS CIENCIAS SOCIALES II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN

ATENCIÓN: La calificación debe hacerse en múltiplos de 0,25 puntos

Ejercicio 1. (Puntuación máxima: 2,5 puntos)Apartado (1.a): 1,25 puntos.0,25 puntos.Descripción adecuada de las tres incógnitas						
Ejercicio 2. (Puntuación máxima: 2,5 puntos)						
Pregunta 2.1 Puntuación máxima: 2,5 puntos Apartado (2.1.a): 1 punto.						
Aplicación correcta de la definición de continuidad en $x = 0$ 0,75 puntos.						
Cálculo correcto del valor del parámetro a						
Apartado (2.1.b): 1,5 puntos.						
Justificación correcta de la no existencia de asíntotas verticales 0,25 puntos.						
Cálculo correcto de la asíntota horizontal en infinito						
Cálculo correcto de la asíntota oblicua en menos infinito 0,75 puntos.						
Pregunta 2.2 Puntuación máxima: 2,5 puntos						
Apartado (2.2.a): 1,25 puntos.						
Cálculo correcto de la derivada						
Cálculo de los intervalos de crecimiento y decrecimiento						
Determinación del máximo y mínimo (basta con la abscisa)						
Apartado (2.2.b): 1,25 puntos.						
Obtención de la integral						
Cálculo correcto del valor de la integral definida 0,50 puntos.						
Ejercicio 3. (Puntuación máxima: 2,5 puntos)						
Pregunta 3.1 Puntuación máxima: 2,5 puntos						
Apartado (3.1.a): 1 punto.						
Determinación del valor crítico $z_{\alpha/2}$						
Planteamiento con la aplicación de la fórmula del error						
Cálculo correcto del tamaño mínimo de la muestra						
Apartado (3.1.b): 1,5 puntos.						
Aproximación correcta y justificada a la distribución normal 0,75 puntos.						
Cálculo correcto de la probabilidad pedida						


NOTA: La resolución de los ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados.

Pregunta 3.2 Puntuación máxima: 2,5 puntos	
Apartado (3.2.a): 1,25 puntos.	
Determinación del peso medio muestral 0,25 puntos	
Determinar el valor $z_{\alpha/2}$	
Aplicación de la fórmula del error y obtención del mismo 0,50 puntos.	
Determinación correcta del intervalo de confianza	
Apartado (3.2.b): 1,25 puntos.	
Determinación de la distribución de la media	
Planteamiento de la probabilidad pedida	
Cálculo correcto de la probabilidad	
Ejercicio 4. (Puntuación máxima: 2,5 puntos)	
Pregunta 4.1 Puntuación máxima: 2,5 puntos	
Apartado (4.1.a): 1,25 puntos.	
Planteamiento correcto de la probabilidad	
Cálculo correcto de la probabilidad 0,50 puntos.	
Apartado (4.1.b): 1,25 puntos.	
Planteamiento correcto de la probabilidad	
Cálculo correcto de la probabilidad	
La NO definición de los sucesos se penalizará con 0,25 puntos en la puntuación total de la pregunta.	
Pregunta 4.2 (Puntuación máxima: 2,5 puntos)	
Apartado (4.2.a): 1 punto.	
Planteamiento correcto de la probabilidad	
Cálculo correcto de la probabilidad 0,50 puntos.	
Apartado (4.2.b): 1 punto.	
Planteamiento correcto de la probabilidad	
Cálculo correcto de la probabilidad	
Apartado (4.2.c): 0,5 puntos.	
Justificación correcta de la dependencia de los sucesos 0,50 puntos.	

Matemáticas Aplicadas a las Ciencias Sociales

ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z.

Z	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9954	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986